Appendix F
Specification for ‘Slim-I/O’
Panel Mount Cable to Board I/O Connector
Version 1.0
FOREWORD

OBSAI description and specification documents are developed within the Technical Working Group of the Open Base Station Architecture Initiative Special Interest Group (OBSAI SIG). Members of the OBSAI TWG serve voluntarily and without compensation. The description and specifications developed within OBSAI represent a consensus of the broad expertise on the subject within the OBSAI SIG.

The OBSAI SIG uses the following terminology in the specifications:

- "shall" expresses a provision that is binding
- "should" and "may" expresses non-mandatory provisions
- "will" expresses a declaration of purpose on the part of the OBSAI SIG. It may be necessary to use "will" in cases where the simple future tense is required

Use of an OBSAI reference or specification document is wholly voluntary. The existence of an OBSAI Specification does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the OBSAI Specification. Furthermore, the viewpoint expressed at the time a specification is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the specification. Every OBSAI Specification is subjected to review in accordance with the Open Base Station Architecture Initiative Rules and Procedures.

Implementation of all or part of an OBSAI Specification may require licenses under third party intellectual property rights, including without limitation, patent rights (such a third party may or may not be an OBSAI Member). The Promoters of the OBSAI Specification are not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

The information in this document is subject to change without notice and describes only the product defined in the introduction of this documentation. This document is intended for the use of OBSAI Member’s customers only for the purposes of the agreement under which the document is submitted, and no part of it may be reproduced or transmitted in any form or means without the prior written permission of OBSAI Management Board. The document has been prepared for use by professional and properly
trained personnel, and the customer assumes full responsibility when using it.

OBSAI Management Board, Marketing Working Group and Technical Working Group welcome customer comments as part of the process of continuous development and improvement of the documentation.

The information or statements given in this document concerning the suitability, capacity, or performance of the mentioned hardware or software products cannot be considered binding but shall be defined in the agreement made between OBSAI members. However, the OBSAI Management Board, Marketing Working Group or Technical Working Group have made all reasonable efforts to ensure that the instructions contained in the document are adequate and free of material errors and omissions.

OBSAI liability for any errors in the document is limited to the documentary correction of errors. OBSAI WILL NOT BE RESPONSIBLE IN ANY EVENT FOR ERRORS IN THIS DOCUMENT OR FOR ANY DAMAGES, INCIDENTAL OR CONSEQUENTIAL (INCLUDING MONETARY LOSSES), that might arise from the use of this document or the information in it.

This document and the product it describes are considered protected by copyright according to the applicable laws. OBSAI logo is a registered trademark of Open Base Station Architecture Initiative Special Interest Group. Other product names mentioned in this document may be trademarks of their respective companies, and they are mentioned for identification purposes only. Copyright © Open Base Station Architecture Initiative Special Interest Group. All rights reserved. Users are cautioned to check to determine that they have the latest edition of any OBSAI Specification.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of OBSAI, the OBSAI TWG will initiate action to prepare appropriate responses. Since OBSAI Specifications represent a consensus of OBSAI Member’s interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason OBSAI and the members of its Technical Working Groups are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.
Comments on specifications and requests for interpretations should be addressed to:

Peter Kenington
Chairman, OBSAI Technical Working Group
Andrew
peter.kenington@andrew.com
Contents

1 Summary of changes..6

2 Scope ...7

3 General Description ..8

4 Ratings ...9

5 Electrical Specification (Ratings) ...10

6 Mechanical Specification ...11

7 Environmental Requirement ..15

7.1 Environment specification for transportation ...15

8 PCB Layout and Minimum Connector Spacing ...15

9 Panel Cut-Out ...17

10 Panel Mounting Inserts ...18

11 Specification Drawings ..19

12 Mating Dimensions ...20

13 Cable Assembly Specification ..23

12.1 Electrical Specifications: ..23

12.1.1 Insertion Loss Lower Limit for L=3m Long, High Speed Cable Assembly:23

12.1.2 Insertion Loss Lower Limit for L=3m Long, Low Speed Cable Assembly:23

12.1.3 Return Loss Lower Limit for L=3m Long, High Speed Cable Assembly:24

12.1.4 Return Loss Lower Limit for L=3m Long, Low Speed Cable Assembly:24

12.2 Cable Assembly Impedance Profile (TDR method): ..24

12.3 Cable Assembly (L=3m Long) Total Differential Noise (TDR method):25

12.4 Differential Skew (L=3m Long): ..25

14 Reference Documents ..26
Summary of changes

<table>
<thead>
<tr>
<th>Version</th>
<th>Approved by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Management Board</td>
<td>June 28, 2006</td>
</tr>
</tbody>
</table>
2 Scope

Specification for:

Panel Mount I/O cable Connector for RF Module in Base Transmission System.
3 General Description

- Type: I/O
- Connection method: Panel Mount – Cable to Board
- Shape: Rectangle
- Number of positions: 16

Figure 1: ‘Slim-I/O’, Right Angle Receptacle & Cable Plug.
4 Ratings

- Max. Voltage (U): 50 VDC
- Max. Current (I): 1.0 A at 30°C temp. rise above ambient
- Operational temperature range: -10…+60 °C
- Relative Humidity: 10% to 90%
- Characteristic Impedance: 100Ω ± 10% (Differential)
- Data Rate: Up to 3.125Gbps
5 Electrical Specification (Ratings)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry circuit resistance</td>
<td>70 mΩ maximum. ΔR 20 mΩ maximum.</td>
<td>EIA-364-23. Subject specimens to 100mA maximum and 20mV maximum open circuit voltage. See Figure 2.</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>1000 MΩ minimum</td>
<td>EIA-364-21. Test between adjacent contacts of unmated specimens.</td>
</tr>
<tr>
<td>Dielectric withstanding voltage</td>
<td>350 VAC at sea level. 1 minute hold with no breakdown or flashover.</td>
<td>EIA-364-20 Condition I. Test between adjacent contacts of unmated specimens.</td>
</tr>
<tr>
<td>Impedance, Single Ended / Differential</td>
<td>$Z_{SE}(\Omega) \pm 10%$ \ $Z_{DIFF}(\Omega) \pm 10%$</td>
<td>Measured with TDR @ Rise time =100ps (10% -to- 90%)</td>
</tr>
<tr>
<td>Eye pattern. Differential – Normalized</td>
<td>0.8 minimum @ 50% of UI</td>
<td>Stimulated 1$V_{_{\text{PP}}}$ Differential PRBS $2^{11}-1$. Measured Procedure EIA 364-107</td>
</tr>
<tr>
<td>Insertion loss, Diff. Mixed Mode (SDD21)</td>
<td>1.0 dB max. @ $f \leq 2.5$ GHz \ -2.0 dB @ (f) up to 5 GHz</td>
<td>Measured Procedure EIA 364-101</td>
</tr>
<tr>
<td>Return loss, Diff. Mixed Mode (SDD11)</td>
<td>≤ -10 dB @ $f \leq 2.5$ GHz \ ≤ -5 dB @ (f) up 5 GHz</td>
<td>Measured Procedure EIA 364-108</td>
</tr>
<tr>
<td>Near end Noise, Differential (Isolation)</td>
<td>-28dB max. up to 2.5GHz \ -26 dB @ (f) up 5 GHz</td>
<td>Measured Procedure EIA 364-90</td>
</tr>
</tbody>
</table>
6 Mechanical Specification

- All mechanical dimensions are described in drawings in chapter 8.
- Allowed misalignment (Plug relative to Receptacle):
 - Longitudinal $\leq \pm 25^\circ$
 - Vertical $\leq \pm 6^\circ$
- Basic material of the body:
 - Housing – Thermoplastic, UL94V-0, Black
 - Shell: Copper Alloy
 - Jack Screw Spacer – Thermoplastic, UL94V-0, Black
- Contact material:
 - Receptacle – Phosphor Bronze
 - Plug – PCB Substrate. FR4 with Au Plated Copper Conductors
- PCB Termination: Plated Through Hole – Solder Type as well as Pin In Paste compatible
- Weight (g): 9.0 gr. \pm 0.5 gr.
- Connector must be compatible with RoHS requirements.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solderability</td>
<td>Solderable area shall have a minimum of 95% solder coverage.</td>
<td>EIA-364-638. Subject contacts to Solderability.</td>
</tr>
<tr>
<td>Vibration, random</td>
<td>No discontinuities of 1 μsec. or longer duration. See Note (1).</td>
<td>EIA-364-28, Test condition VII, Condition D. Subject mated specimens to 3.10 G’s RMS between 20-500 Hz. 15 minutes in each of 3 mutually perpendicular planes.</td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>No discontinuities of 1 μsec. or longer duration. See Note (1).</td>
<td>EIA-364-27, Method H. Subject mated specimens to 30 G’s half-sine shock pulses of 11msec. duration. 3 shocks in each direction applied along 3 mutually perpendicular planes, 18 total shocks.</td>
</tr>
<tr>
<td></td>
<td>Durability</td>
<td>50 Mating / Unmating cycles</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Mating force</td>
<td>30 N maximum.</td>
</tr>
<tr>
<td></td>
<td>Unmating force</td>
<td>2N minimum.</td>
</tr>
<tr>
<td></td>
<td>Retention force</td>
<td>Specimens shall remain mated when a force of 75 N is applied. No opens detected.</td>
</tr>
<tr>
<td></td>
<td>Side load force</td>
<td>Specimens shall remain mated when a force of 50 N is applied. No opens detected.</td>
</tr>
<tr>
<td></td>
<td>Longitudinal force</td>
<td>Specimens shall remain mated when a force of 50 N is applied. No opens detected.</td>
</tr>
</tbody>
</table>

NOTE (1) Shell meet visual requirements, show no physical damage, and meet requirements of additional tests as specified in the Product Qualification and Prequalification Test Sequence Per EIA-346-D.
Figure 2: Dry Circuit resistance Measurement Points

Figure 3: Side Load Force
Figure 4: Longitudinal Force
7 Environmental Requirement

Following values are a list of conditions where the connector will be used. Connector manufacturer does not have to test the connector according to these conditions. However this information must be considered in connector design.

These requirements come from system requirements and might be extended by a connector environmental test specification in a separate document.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal shock.</td>
<td>See Note (1)</td>
<td>EIA-364-32. Subject unmated specimens to 5 cycles between –10 and +70°C</td>
</tr>
<tr>
<td>Humidity – Temperature cycling.</td>
<td>See Note (1)</td>
<td>EIA-364-31, Method III Subject unmated specimens to 10 cycles (10 days) between 25 and 65°C at 80 to 100% RH.</td>
</tr>
<tr>
<td>Temperature life.</td>
<td>See Note (1)</td>
<td>EIA-364-17, Method A, Test condition C. Subject mated specimens to 70°C for 500 hours.</td>
</tr>
<tr>
<td>Corrosion & Porosity Industrial atmosphere</td>
<td>See Note (1)</td>
<td>EIA-364-53B,</td>
</tr>
</tbody>
</table>

NOTE (1) Shell meet visual requirements, show no physical damage, and meet requirements of additional tests as specified in the Product Qualification and Prequalification Test Sequence Per EIA-346-D.

7.1 Environment specification for transportation

Climatic and mechanical conditions for units, modules and components:

ETS 300 019-1-2: 1994 (testing methods) class 2.3.

ETS 300 019-1-2: 1992 (requirements) class 2.3.
PCB Layout and Minimum Connector Spacing

Figure 5: Board layout of R/A Receptacle

GENERAL TOLERANCE: ±0.05
Figure 6: R/A Receptacle Recommended Panel Cutout

GENERAL TOLERANCE: ±0.05
Panel Mounting Inserts

NOTES:
1. MATERIALS: STAINLESS STEEL PER ASTM A-582 TYPE 303 CONDITION A 4mm DIA.
2. DEBURR AND REMOVE SHARP EDGES.
3. FINISH: PASSIVARE PER QQ-P-35.

Figure 7: Panel Inserts for Jack Screws
Figure 8: Right Angle Receptacle Connector – 16 Positions
Figure 9: Plug Assembly

Figure 10: Fully Mated Condition
12 Mating Dimensions

Figure 11: Right Angle Receptacle
Figure 12: Cable Plug
13 Cable Assembly Specifications

Figure 13: General Cable Assembly Drawing

Unless otherwise specified, herein after specifications refers to L=3m long!

13.1 Electrical Specifications:

13.1.1 Insertion Loss Lower Limit for L=3m Long, High Speed Cable Assembly:

\[
SDD_{21}(dB)=\begin{cases}
-5 \times \frac{f}{f_0} ; & 0.1GHz < f \leq \frac{f_0}{3} \\
-5 \times \left(f - \frac{f_0}{3} \right) - 5 ; & \frac{f_0}{3} < f \leq 7GHz
\end{cases}
\]

Where:
\(f \) is given in (GHz)
\(f_0 = 1.575 \) GHz

13.1.2 Insertion Loss Lower Limit for L=3m Long, Low Speed Cable Assembly:

\[
SDD_{21}(dB)=\begin{cases}
-5 ; & 0.01 < f \leq 0.2GHz \\
-8 ; & 0.2 < f \leq 0.525GHz \\
-21 ; & 0.525 < f \leq 2.1GHz \\
-30 ; & 2.1 < f \leq 4.5GHz
\end{cases}
\]

Where:
\(f \) is given in (GHz)
13.1.3 Return Loss Lower Limit for L=3m Long, High Speed Cable

Assembly:

\[
SDD11\, (dB) = \begin{cases}
-15 & ; \quad 0.1\text{GHz} < f \leq \frac{f_0}{3} \\
-15 + 11 \times \log_{10} \left(\frac{3 \times f}{f_0} \times 1000 \right) & ; \quad \frac{f_0}{3} < f \leq 7\text{GHz}
\end{cases}
\]

Where:

\(f \) is given in (GHz)

\(f_0 = 1.575 \text{ GHz} \)

13.1.4 Return Loss Lower Limit for L=3m Long, Low Speed Cable

Assembly:

\[
SDD11\, (dB) = \begin{cases}
-12 & ; \quad 0.01 < f \leq 1.0\text{GHz} \\
-6 & ; \quad 1.0 < f \leq 2.0\text{GHz} \\
-4 & ; \quad 2.0 < f \leq 4.5\text{GHz}
\end{cases}
\]

Where:

\(f \) is given in (GHz)

13.2 Cable Assembly Impedance Profile (TDR method):

<table>
<thead>
<tr>
<th>Section</th>
<th>Value</th>
<th>Tolerance</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fixture</td>
<td>100Ω</td>
<td>±10%</td>
<td></td>
</tr>
<tr>
<td>Mating Contact</td>
<td>Differential</td>
<td>±10%</td>
<td></td>
</tr>
<tr>
<td>Cable termination</td>
<td>Differential</td>
<td>±15%</td>
<td>Rise Time: 110ps (20% + 80%)</td>
</tr>
<tr>
<td>Cable</td>
<td></td>
<td>±5%</td>
<td></td>
</tr>
</tbody>
</table>
13.3 Cable Assembly (L=3m Long) Total Differential Noise (TDR method):

Total Noise under multi aggressor synchronous condition shall not exceed 3.5% for rise time of 100ps (10% ÷ 90%) or slower.

Multi aggressor condition shall be considered as ‘N - 1’ active differential pairs switching concurrently while ‘N’ is the maximum number of assigned differential pair in the connector. The remaining pair shall be passive, terminated and monitored using TDR sampling head for NEN and FEN.

The total noise shall be the summation of NEN and FEN.

13.4 Differential Skew (L=3m Long):

Using differential TDR sampling head, the following values shall be considered as maximum allowed skew:

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum Value</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-Pair Skew</td>
<td>35 ps</td>
<td>Measured at 15% of TDR’s Single-Ended Output voltage swing</td>
</tr>
<tr>
<td>Inter-Pair Skew</td>
<td>150 ps</td>
<td>Measured at 15% of TDR’s Differential Output voltage swing</td>
</tr>
</tbody>
</table>
14 Reference Documents

- MIL-STD-1344, test methods
- EIA-364 Test Procedures
- IEC-512 Test Procedures
- See EIA-364-D Annex Page A-1 to A-4 Test Comparison Cross Reference
 (informative) among EIA-364, IEC-512 & MIL-STD-1344